

# NATIONAL INSTITUTE OF TECHNICAL TEACHERS TRAINING AND RESEARCH (DEEMED TO BE UNIVERSITY UNDER DISTINCT CATEGORY)

ANSWER KEY

CHANDIGARH

Ph.D. Entrance Examination 2024

| Subject / Branch / Department : |   | APPLIED SCIENCE (MATHEMATICS) |   |   |
|---------------------------------|---|-------------------------------|---|---|
| Roll No.                        | : | /                             | 1 | 0 |
| Candidate Name                  | : |                               | / |   |
| Date of Examination             | : |                               | / |   |

### Maximum Marks: 25 (There is no negative marking)

Notes: (a) Only one option to be tick-marked out of the four options given as answer (b) The Candidate must put his/her signature with date at the bottom of each page (c) For any rough work, please use ONLY back-sides of pages which are left blank

1. The Charpit's equation for the PDE  $up^2 + q^2 + x + y = 0$ ,  $p = \frac{\partial u}{\partial x}$ ,  $q = \frac{\partial u}{\partial y}$  are given by:

(A) 
$$\frac{dx}{-1-p^3} = \frac{dy}{-1-qp^2} = \frac{du}{2p^2u+2q^2} = \frac{dp}{2pu} = \frac{dq}{2q}$$
  
(B)  $\frac{dx}{2pu} = \frac{dy}{2q} = \frac{du}{2p^2u+2q^2} = \frac{dp}{-1-p^3} = \frac{dq}{-1-qp^2}$ 

(C) 
$$\frac{d}{dp^2} = \frac{dy}{q^2} = \frac{d}{0} = \frac{dy}{x} = \frac{dy}{y}$$

(D) 
$$\frac{dx}{2q} = \frac{dy}{2pu} = \frac{du}{x+y} = \frac{dp}{p^2} = \frac{dq}{qp^2}$$

2. Consider the Linear Programming problem:

Minimize z = -2x - 5y, subject to  $3x + 4y \ge 5$ ,  $x \ge 0$ ,  $y \ge 0$ 

Which of the following is correct ?

(A)Set of feasible solution is empty

(B) \$et of feasible solutions is non empty but there is no optimal solution

(C) Optimal value is attained at (0, 5/4)

(D)Optimal value is attained at (5/3, 0)

Candidate's Signature with Date

Page 1 of 8

3. Hundred (100) tickets are marked as 1,2,..., 100 and are arranged at random. Four tickets are picked from these tickets and are given to four persons A, B, C and D. What is the probability that A gets the ticket with the largest value (among A,B,C,D) and D gets the ticket with the smallest value (among A, B,C, D)?

ANSWER

(A)1/4

(B) 1/6

(C) 1/2

- (D)1/12
- Let X<sub>1</sub>, X<sub>2</sub>,..., X<sub>n</sub> be a random sample from N(θ,1), where θ ∈ {1,2}. Then which of the following statements about the maximum likelihood estimator (MLE) of θ is correct –

(A) MLE of  $\theta$  does not exist

(B) MLE of  $\theta$  is  $\overline{X}$ 

(C) MLE of  $\theta$  exists but it is not  $\overline{X}$ 

(D)MLE of  $\theta$  is an unbiased estimator of  $\theta$ 

5. The matrix 
$$\begin{pmatrix} 3 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 3 \end{pmatrix}$$
 is -

(A) Positive definite

(B) Non-negative definite but not positive definite

(C) Negative definite

(D)Neither negative definite nor positive definite

- A group G is generated by the element x, y with the relations x<sup>3</sup> = y<sup>2</sup> = (xy)<sup>2</sup> = 1, the order of G is
  - (A)4

(B)6

(C) 8

(D)12

Page 2 of 8

7. The resolvent kernel  $R(x,t,\lambda)$  for the Volterra integral equation  $\phi(x) = x + \lambda \int_{a}^{x} \phi(s) ds$ 

is (A)  $e^{\lambda(x+t)}$ (B)  $e^{\lambda(x-t)}$ (C)  $\lambda e^{(x+t)}$ (D)  $e^{\lambda u}$ 

 Consider the M/M/1 queue with the arrival rate λ and service rate μ with μ>λ. What is the probability that no customer exited the system before time 5 ?

(A) 
$$\frac{\mu e^{-5\lambda} - \lambda e^{-5\mu}}{\mu - \lambda}$$
  
(B)  $e^{-5\lambda} - e^{-5\mu}$   
(C)  $e^{-5\lambda} + (1 - e^{-5\lambda}) \frac{e^{-5\mu}}{5\mu}$ 

(D) 
$$e^{-5\mu} + (1 - e^{-5\mu}) \frac{e^{-5\lambda}}{5\lambda}$$

- 9. Consider the power series  $f(x) = \sum_{n=2}^{\infty} \log(n) x^n$ . The radius of convergence of the series f(x) is
  - 1.---
  - (A)0
  - (C)3
  - (D) ∞
- 10. Two students are solving the same problem independently. If the probability that the first solves the problem is 3/5 and the probability that the second solves the problem is 4/5, what is the probability that the at least one of the them solves the problem ?

Candidate's Signature with Date

- (A)17/25
- (B) 19/25
- (C) 21/25
- (D)23/25

Page 3 of 8

11. Let  $W_1 = \{(u, v, w, x) \in \mathbb{R}^4, u + v + w = 0, 2v + x = 0, 2u + 2w - x = 0\}$  and

 $W_2 = \{(u, v, w, x) \in \mathbb{R}^4, u + w + x = 0, u + w - 2x = 0, v - x = 0\}$ . Then which among the following is true ?

(A)  $\dim(W_1) = 1$ 

(B)  $\dim(W_2) = 2$ 

(C) dim $(W_1 \cap W_2) = 1$ 

(D) dim $(W_1 + W_2) = 3$ 

12. Let f(x) be a polynomial of unknown degree taking the values -

| x    | 0 | 1 | 2  | 3  |
|------|---|---|----|----|
| F(x) | 2 | 7 | 13 | 16 |

All the fourth divided differences are -1/6. Then the coefficient of x3 is -

(A)1/3

(B) -2/3

(C)16

(D)-1

13. Let V denote the vector space of real valued continuous functions on the closed interval [0, 1]. Let W be the sub space of V spanned by {sin(x), cos(x), tan(x)}. Then the dimension of W over R is -

(A)1

(B) 2

(C)3

(D)Infinite

14. The maximum value of objective function  $Z = 5x_1 + 2x_2$  under the linear constraints  $x_1, x_2 \ge 0, x_1 \ge x_2, \quad 2 \le x_1 + x_2 \le 4$  is -

(A) 14 (B) 20 (C) 25 (D) 27

Page 4 of 8

15. Consider the following LPP:

 $Max.Z = x_1 + \frac{5}{2}x_2,$ Subject to  $5x_1 + 3x_2 \le 15,$  $-x_1 + x_2 \le 1,$  $2x_1 + 5x_2 \le 10, x_1, x_2 \ge 0$ 

Then the problem -

(A) Has no feasible solution

(B)Has indefinitely many optimal solutions

- (C) Has an unique optimal solution
- (D) Has an unbounded solution

16. The value of 
$$\lim_{z \to 2e^{4\pi 3}} \frac{z^3 + 8}{z^4 + 4z^2 + 16}$$
 is -

(A) 
$$\frac{3}{8}(1+i)$$
  
(B)  $\frac{2}{3}(1+i)$   
(C)  $\frac{1}{8}(1-i)$   
(D)  $\frac{3}{8}(1-i)$ 

17. Customers arrives at a sales counter managed by a single person according to Poisson process with a mean rate of 20 per hour. The time required to serve a customer has an exponential distribution with a mean if 100 seconds. What is the average waiting time of a customer –

Candidate's Signature with Date

(A)225

(B) 200

(C) 250

(D)150

Page 5 of 8

18. The objective function of the dual problem for the following primal LPP:

 $Max.f = 2x_1 + x_2,$ Subject to  $x_1 - 2x_2 \ge 2,$  $x_1 + 2x_2 = 8,$  $x_1 - x_2 \le 11,$ 

With  $x_1 \ge 0$  and  $x_2$  unrestricted in sign, is given by

(A) 
$$Min.z = 2y_1 - 8y_2 + 11y_3$$

- (B)  $Min.z = 2y_1 + 8y_2 + 11y_3$
- (C)  $Min.z = 2y_1 8y_2 11y_3$
- (D)  $Min.z = 2y_1 + 8y_2 11y_3$
- 19. Men arrive in a queue according to a Poisson process with rate  $\lambda_1$  and women arrive in the same queue according to another Poisson process with rate  $\lambda_2$ . The arrivals of men and women are independent. The probability that the first arrival in the queue is a man, is –

(A) 
$$\frac{\lambda_1}{\lambda_1 + \lambda_2}$$
  
(B)  $\frac{\lambda_2}{\lambda_2 + \lambda_2}$ 

(C) 
$$\frac{\lambda_1}{\lambda_2}$$
  
(D)  $\frac{\lambda_2}{\lambda}$ 

20. The value of integral  $\int_{|z|=2} \frac{e^{2z}}{(z+1)^4} dz$ 

(A) 
$$2\pi i e^{-1}$$
  
(B)  $\frac{8}{3}\pi i e^{-2}$   
(C)  $\frac{2}{3}\pi i e^{-2}$ 

(D) 0

Page 6 of 8

21. The coefficient of z<sup>3</sup> in the Laurent's expansion of the function  $f(z) = \frac{1}{(z+1)(z+3)}$  in

the domain |z| > 3 is:

(A)8

(B)-8

(C)(D)4

- 22. The probabilities of X, Y and Z becoming managers are 4/9, 2/9 and 1/3 respectively. The probabilities that the Bonus scheme will be introduced if X, Y and Z becomes managers are 3/10, ½ and 4/5 respectively. Then, what is the probability that Bonus scheme will be introduced?
  - (A)23/45
  - (B) 24/90
  - (C) 12/45
  - (D)23/90
- 23. The joint p.d, f of a two-dimensional random variable (X, Y) is given by:

 $f(x, y) = \begin{cases} 2, 0 < x < 1, 0 < y < x; \\ 0, elsewhere \end{cases}$ 

The marginal density function of X and Y is -

(A) 
$$2(1 - y)$$
  
(B)  $2(1+y)$   
(C)  $1-y$   
(D)  $1+2y$ 

24. Let A be 5×5 matrix and let B be obtained by changing one element of A. Let r and s be the ranks of A and B respectively. Which of the following statements is correct –

(A) 
$$s \le r+1$$
  
(B)  $r \le s$   
(C)  $s = r-1$ 

(D)  $s \neq r$ 

Candidate/s Signature with Date

Page 7 of 8

25. Consider the integral equation  $y(x) = x^3 + \int_0^x \sin(x-t)y(t)dt, x \in [0,\pi]$ . Then the value

of y(1) is-(A) 19/20 (B) 1 (C) 17/20

(D)21/20

\*\*\*\*

ssohami

Dean - Academics & Students NITTTR, Chandigarh - 160019