

NATIONAL INSTITUTE OF TECHNICAL TEACHERS TRAINING AND RESEARCH

(DEEMED TO BE UNIVERSITY UNDER DISTINCT CATEGORY)

CHANDIGARH

Ph.D. Entrance Examination 2024

Subject / Branch / Department	:	APPLIED SCIENCE (PHYSICS)
Roll No.	:	1 /
Candidate Name	:	
Date of Examination	:	

Maximum Marks: 25 (There is no negative marking)

Notes: (a) Only one option to be tick-marked out of the four options given as answer

- (b) The Candidate must put his/her signature with date at the bottom of each page
- (c) For any rough work, please use ONLY back-sides of pages which are left blank
- 1. Represents a Laurent series?
 - A)A series that includes negative powers of the variable
 - B) A series with only positive powers of the variable
 - C) A series with only even powers of the variable
 - D) A series that does not include any powers of the variable
- 2. The central limit theorem states that:
 - A) The distribution of sample means approaches a normal distribution as the sample size increases.
 - B) The sum of independent random variables is uniform.
 - C) The sample mean is always equal to the population mean.
 - D) The sum of independent random variables is exponential.
- 3. In a non-inertial reference frame, which of the following forces appears?
 - A) Gravitational force
 - (B) Centrifugal force
 - C) Magnetic force
 - D) Electrostatic force

Candidate's Signature with Date

- 4. The moment of inertia tensor is used to describe:
 - A)Angular momentum in a rotating body
 - B) Kinetic energy in linear motion
 - C) Force in a non-inertial frame
 - D) The potential energy of a system
- 5. The Poynting vector represents:
 - A) The energy flux density of an electromagnetic wave
 - B) The magnetic field intensity
 - C) The electric field intensity
 - D) The electric displacement field
- 6. Maxwell's equations describe:
 - A) Electromagnetic waves
 - B) Electric and magnetic fields in free space
 - C) The propagation of light
 - D) All of the above
- 7. The wavefunction for a particle in a one-dimensional box is:
 - A)Sinusoidal
 - B) Exponential
 - C) Gaussian
 - D) Linear
- 8. The time-independent Schrödinger equation is an example of:
 - A)An eigenvalue problem
 - B) A differential equation
 - C) A wave equation
 - D) None of the above
- 9. The first law of thermodynamics is a statement of:
 - A) Conservation of energy
 - B) Conservation of momentum
 - C) Conservation of mass
 - D) Conservation of entropy

- 10. The canonical ensemble is characterized by:
 - (A) Constant temperature, volume, and number of particles
 - B) Constant energy, volume, and number of particles
 - C) Constant temperature, pressure, and number of particles
 - D) Constant entropy, volume, and number of particles
- 11. The chemical potential is defined as:
 - A) The change in free energy when the number of particles changes
 - B) The energy required to change the temperature
 - C) The energy required to change the pressure
 - D) The energy required to change the volume
- 12. Blackbody radiation is best described by:
 - A) Planck's law
 - B) Wien's law
 - C) Stefan-Boltzmann law
 - (D) All of the above
- 13. A diode is a device that allows current to flow:
 - (A) In one direction
 - B) In both directions
 - C) In a sinusoidal manner
 - D) Only when reverse biased
- 14. A digital signal is:
 - A) Continuous
 - B)Discrete
 - C) Sinusoidal
 - D) Triangular
- 15. Error analysis in experiments is important for:
 - A) Determining the accuracy of results
 - B) Identifying the sources of errors
 - C) Estimating uncertainties
 - D) All of the above

Ph.D. Entrance Exam - 2024, NITTTR Chandigarh 16. The fine structure of spectral lines in hydrogen is due to: A) Spin-orbit coupling B) Zeeman effect C) Hyperfine structure D) Stark effect 17. The Einstein A coefficient describes: A) Absorption B) Stimulated emission C) Spontaneous emission D) Coherent scattering 18. The vibrational spectrum of a diatomic molecule is quantized in terms of: A) Harmonic oscillators B) Rigid rotators C) Spin states D) Atomic orbitals 19. The reciprocal lattice is used to describe: A) The real space lattice of a crystal B) The diffraction pattern of a crystal C) The phonon modes in a crystal D) The electron energy levels in a crystal 20. The free electron model is used to describe: (A) Electrical conductivity in metals B) Optical properties of semiconductors C) Magnetic properties of insulators D) Thermal properties of gases 21. The Hall effect is used to measure: A) The magnetic field strength

B) The temperature of a material

D) The electrical resistance

C) The type of charge carriers in a material

- 22. Superconductivity is characterized by:
 - A) High electrical resistance
 - B) Infinite electrical resistance
 - C) High magnetic field strength
 - D) Zero electrical resistance
- 23. The specific heat of solids at low temperatures is explained by:
 - A) Drude model
 - B) Debye model
 - C) Sommerfeld model
 - D) Einstein model
- 24. The beta decay process involves:
 - A) The emission of an alpha particle
 - B) The emission of a gamma ray
 - C) The emission of an electron or positron
 - D) The emission of a neutron
- 25. The Pauli exclusion principle applies to:
 - A) Photons
 - B) Bosons
 - (C) Fermions
 - D) Gravitons

Dean - Academics & Students NITTTR, Chandigarh - 160019

ssohami